102. E. Barsotti and M. Piri, The effect of pore size distribution on capillary condensation in nanoporous media, submitted (2020). 

101. Z. Qin, M. Arshadi, and M. Piri, Micro-scale experimental investigation of carbonated water injection and in situ CO2 exsolution in oil-wet carbonate, under review (2020).

100. B. Zhang, A. Mohamed, L. Goual, and M. Piri, Pore-scale experimental investigation of oil Recovery enhancement in oil-wet carbonates using carbonaceous nanofluids, Scientific Reports, accepted (2020).

99. Y. Gong, M. Sedghi, and M. Piri, Pore-to-core upscaling of solute transport under steady-state two-phase flow conditions using dynamic pore network modeling approach, Transport in Porous Media135, 181-218 (2020). DOI: https://doi.org/10.1007/s11242-020-01475-0

98. G. Schafer, R. di Chiara Roupert, A. H. Alizadeh, and M. Piri, On the prediction of three-phase relative permeabilities using two-phase constitutive relationships, Advances in Water Resources145, 103731 (2020). DOI: https://doi.org/10.1016/j.advwatres.2020.103731

97. A. Mohamed , M. Khishvand , and M. Piri, A pore-scale experimental investigation of process-dependent capillary desaturation, Advances in Water Resources144, 103702 (2020). DOI: https://doi.org/10.1016/j.advwatres.2020.103702

96. T. Qin, L. Goual, M. Piri, Z. Hu, and D. Wen, Nanoparticle-stabilized microemulsions for enhanced oil recovery from heterogeneous rocks, Fuel274, 117830 (2020). DOI: https://doi.org/10.1016/j.fuel.2020.117830

95. W. Kuang, S. Saraji, and M. Piri, Nanofluid-induced wettability gradient and imbibition enhancement in natural porous media: A pore-scale experimental investigation, Transport in Porous Media, 134, 593-619 (2020). DOI: https://doi.org/10.1007/s11242-020-01459-0

94. S. Bai, J. Kubelka, and M. Piri, Relationship between molecular charge distribution and wettability reversal efficiency of cationic surfactants on calcite surfaces, Journal of Molecular Liquids, 318, 114009 (2020). DOI: https://doi.org/10.1016/j.molliq.2020.114009

93. S. Fagbemi, P. Tahmasebi, and M. Piri, Elastocapillarity modeling of multiphase flow-induced solid deformation using volume of fluid method, Journal of computational physics421, 109641 (2020). DOI: https://doi.org/10.1016/j.jcp.2020.109641

92. S. P. Tan, E. Barsotti, and M. Piri, Criticality of confined fluids based on the tensile strength of liquids, Industrial \& Engineering Chemistry Research59, 10673-10688 (2020). DOI: https://doi.org/10.1021/acs.iecr.0c01848

91. Y. Xie, M. Khishvand, and M. Piri, Wettability of calcite surfaces: Impacts of brine ionic composition and oil phase polarity at elevated temperature and pressure conditions, Langmuir22, 6079-6088 (2020).  DOI: https://doi.org/10.1021/acs.langmuir.0c00367

90. K. Osei-Bonsu, S. Khorsandi, and M. Piri, Quantitative analysis of phase topology evolution during three-phase displacements in porous media, Lab on a Chip, 20, 2495-2509 (2020). DOI: https://doi.org/10.1039/D0LC00232A

89. Y. Xie, M. Khishvand, and M. Piri, Impact of connate brine chemistry on in situ wettability and oil recovery: Pore-scale experimental investigation, Energy & Fuel34, 4031-4045 (2020). DOI: https://doi.org/10.1021/acs.energyfuels.9b03787

88. S. Bai, J. Kubelka, and M. Piri, Atomistic molecular dynamics simulations of surfactant-induced wettability alteration in crevices of calcite nanopores, Energy & Fuel, 34, 3135-3143 (2020). DOI: https://doi.org/10.1021/acs.energyfuels.9b04528

87. S. Bai, J. Kulbelka, and M. Piri, A positively charged calcite surface model for molecular dynamics studies of wettability alteration, Journal of Colloid and Interface Science, 569, 128-139 (2020).  DOI: https://doi.org/10.1016/j.jcis.2020.02.037

86. M. Arshadi, L. Goual, M. Piri, and M. Gesho, and T. Qin, Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media, Journal of Contaminant Hydrology, 230, 13599 (2020). DOI: https://doi.org/10.1016/j.jconhyd.2020.103599

85. T. Qin, L. Goual, M. Piri, Z. Hu, and D. Wen, Pore-scale dynamics of nanofluid-enhanced NAPL displacement in carbonate rock, Journal of Contaminant Hydrology, 230, 103598 (2020). DOI: https://doi.org/10.1016/j.jconhyd.2019.103598

84. W. Kuang, S. Saraji, and M. Piri, Pore-scale sweep efficiency enhancement by silica-based nanofluids in oil-wet sandstone, Energy & Fuel, 34, 1297-1308 (2020). DOI: https://doi.org/10.1021/acs.energyfuels.9b03081

83. E. Barsotti, S. P. Tan, M. Piri, and Jin-Hong Chen, Capillary-condensation hysteresis in naturally-occurring nanoporous media, Fuel, 263, 116441 (2020). DOI: https://doi.org/10.1016/j.fuel.2019.116441

82. E. Barsotti, S. P. Tan, L. Goual, and M. Piri, Amorphization of carbon nanotubes in water by electron beam radiation, Carbon, 156, 313-319 (2020). DOI: https://doi.org/10.1016/j.carbon.2019.09.043

81. T. Qin, L. Goual, and M. Piri, Synergistic effects of surfactant mixtures on the displacement of nonaqueous phase liquids in porous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123885 (2019). DOI: https://doi.org/10.1016/j.colsurfa.2019.123885

80. Z. Qin, M. Arshadi, and M. Piri, Micro-scale experimental investigations of multiphase flow in oil-wet carbonates. II. Tertiary gas injection and WAG, Fuel, 257, 116012 (2019). DOI: https://doi.org/10.1016/j.fuel.2019.116012

79. Z. Qin, M. Arshadi, and M. Piri, Micro-scale experimental investigations of multiphase flow in oil-wet carbonates. I. In-situ wettability and low-salinity waterflooding, Fuel, 257, 116014 (2019). DOI: https://doi.org/10.1016/j.fuel.2019.116014

78. A. Anbari, E. Lowry and M. Piri, Estimation of capillary pressure in unconventional reservoirs using thermodynamic analysis of pore images, Journal of Geophysical Research-Solid Earth, 124, 10893-10915 (2019). DOI: https://doi.org/10.1029/2018JB016498

77. S. Fagbemi, P. Tahmasebi, and M. Piri, Numerical modeling of strongly coupled microscale multiphase flow and solid deformation, International Journal for Numerical and Analytical Methods in Geomechanics, 44, 161-182 (2019). DOI: https://doi.org/10.1002/nag.2999

76. M. Sabti, A. H. Alizadeh, and M. Piri, In-situ investigation of the impact of spreading on matrix-fracture interactions during three-phase flow in fractured porous media, Advances in Water Resources, 131, 103344 (2019). DOI: https://doi.org/10.1016/j.advwatres.2019.05.017

75. S. P. Tan, E. Barsotti, and M. Piri, Application of material balance for the phase transition of fluid mixtures confined in nanopores, Fluid Phase Equilibria, 496, 31-41 (2019). DOI: https://doi.org/10.1016/j.fluid.2019.05.011

74. V. Mirchi, M. Sabti, M. Piri, and L. Goual, Microscale investigation of the impact of surfactant structure on the residual trapping in natural porous media, Industrial & Engineering Chemistry Research, 58(22), 9397-9411 (2019). DOI: https://doi.org/10.1021/acs.iecr.9b00748

73. M. Khishvand, I. Oraki Kohshour, A. H. Alizadeh, M. Piri, and S. R. Prasad, A multi-scale experimental study of crude oil-brine-rock interactions and wettability alteration during low-salinity waterflooding, Fuel, 250, 117-131 (2019). DOI: https://doi.org/10.1016/j.fuel.2019.02.019

72. S. Fagbemi, P. Tahmasebi, and M. Piri, Pore-scale modeling of multiphase flow through porous media under triaxial stress, Advances in Water Resources, 122, 206-216, (2018). DOI: https://doi.org/10.1016/j.advwatres.2018.10.018

71. M. Arshadi, M. Piri, and M. Sayed, Proppant-packed fractures in shale gas reservoirs: An in-situ investigation of deformation, wettability, and multiphase flow effects, Journal of Natural Gas Science & Engineering, 59, 387-405, (2018). DOI: https://doi.org/10.1016/j.jngse.2018.09.015

70. E. Lowry and M. Piri, Effect of surface chemistry on confined phase behavior in nanoporous media: An experimental and molecular modeling study, Langmuir, 34(32), 9349-9358 (2018). DOI: https://doi.org/10.1021/acs.langmuir.8b00986

69. S. Fagbemi, P. Tahmasebi, and M. Piri, Interaction between fluid and porous media with complex geometries: A direct pore-scale study, Water Resources Research, 54, 6336-6356 (2018). DOI: https://doi.org/10.1029/2017WR022242

68. M. Arshadi, M. Khishvand, A. Aghaei, M. Piri, and G. A. Al-Muntasheri, Pore-scale experimental investigation of two-phase flow through fractured porous media, Water Resources Research, 54, 3602-3631 (2018). DOI: https://doi.org/10.1029/2018WR022540

67. E. Barsotti, S. P. Tan, M. Piri, and Jin-Hong Chen, Phenomenological study of confined criticality: Insights from the capillary condensation of Propane, n-Butane, and n-Pentane in nanopores, Langmuir, 34(15), 4473-4483 (2018). DOI: https://doi.org/10.1021/acs.langmuir.8b00125

66. A. H. Alizadeh, M. Akbarabadi, E. Barsotti, M. Piri, N. Fishman, and N. Nagarajan, Salt precipitation in ultratight porous media and its impact on pore connectivity and hydraulic conductivity, Water Resources Research, 54, 2768-2780 (2018). DOI: https://doi.org/10.1002/2017WR021194

65. M. Heshmati and M. Piri, Interfacial boundary conditions and residual trapping: A pore-scale investigation of the effects of wetting phase flow rate and viscosity using micro-particle image velocimetry, Fuel, 224, 560-578 (2018). DOI: https://doi.org/10.1016/j.fuel.2018.03.010

64. W. Kuang, S. Saraji, and M. Piri, A systematic experimental investigation on the effects of aqueous nanofluids on interfacial properties and their implications for enhanced oil recovery, Fuel, 220, 849-870 (2018). DOI: https://doi.org/10.1016/j.fuel.2018.01.102

63. E. Barsotti, S. Saraji, S. P. Tan, and M. Piri, Capillary condensation of binary and ternary mixtures of n-Pentane-Isopentane-CO2 in nanopores: An experimental study on the effects of composition and equilibrium, Langmuir, 34(5), 1967-1980 (2018). DOI: https://doi.org/10.1021/acs.langmuir.7b04134

62. M. Sedghi and M. Piri, Capillary condensation and capillary pressure of methane in carbon nanopores: molecular dynamics simulations of nanoconfinement effects, Fluid Phase Equilibria, 459, 196-207 (2018). DOI: https://doi.org/10.1016/j.fluid.2017.12.017

61. E. Lowry and M. Piri, Effects of chemical and physical heterogeneity on confined phase behavior in nanopores, Microporous & Mesoporous Materials, 263, 53-61 (2018). DOI: https://doi.org/10.1016/j.micromeso.2017.11.045

60. V. Mirchi, S. Saraji, M. Akbarabadi, L. Goual, and M. Piri, A Systematic study on the impact of surfactant chain length on dynamic interfacial properties in porous media: Implications for enhanced oil recovery, Industrial & Engineering Chemistry Research, 56, 13677-13695 (2017). DOI: https://doi.org/10.1021/acs.iecr.7b02623

59. T. Qin, G. Javanbakht, L. Goual, M. Piri, and B. Towler, Microemulsion-enhanced displacement of oil in porous media containing carbonate cements, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530, 60-71 (2017). DOI: https://doi.org/10.1016/j.colsurfa.2017.07.017

58. S. P. Tan and M. Piri, Retrograde behavior revisited: implications for confined fluid phase equilibria in nanopores, Physical Chemistry Chemical Physics, 19, 18890-18901 (2017) DOI: https://doi.org/10.1039/c7cp02446k

57. M. Akbarabadi, S. Saraji, M. Piri, D. Georgi, and M. Delshad, Nano-scale experimental investigation of in-situ wettability and spontaneous imbibition in ultra-tight reservoir rocks, Advances in Water Resources, 107, 160-179 (2017). DOI: https://doi.org/10.1016/j.advwatres.2017.06.004

56. M. Khishvand, A. H. Alizadeh, I. Oraki Kohshour, M. Piri, and R. S. Prasad, In situ characterization of wettability alteration and displacement mechanisms governing recovery enhancement due to low-salinity waterflooding, Water Resources Research, 53, 4427-4443 (2017). DOI: https://doi.org/10.1002/2016WR020191

55. M. Akbarabadi, M. R. Borges, A. Jan, F. Pereira, and M. Piri, On the validation of a compositional model for the simulation of CO2 injection into saline aquifers, Transport in Porous Media, 119, 25-56 (2017). DOI https://doi.org/10.1007/s11242-017-0872-6

54. M. Arshadi, A. Zolfaghari, M. Piri, G. Al-Muntasheri, and M. Sayed, The effect of deformation on two-phase flow through proppant-packed fractured shale samples: A micro-scale experimental investigation, Advances in Water Resources, 105, 108-131 (2017). DOI: https://doi.org/10.1016/j.advwatres.2017.04.022

53. S. P. Tan and M. Piri, Heat of capillary condensation in nanopores: New insights from equation of state, Physical Chemistry Chemical Physics, 19, 5540-5549 (2017). DOI: https://doi.org/10.1039/c6cp07814a

52. A. Zolfaghari and M. Piri, Pore-scale network modeling of three-phase flow based on thermodynamically consistent threshold capillary pressures. II. Results, Transport in Porous Media, 116(3), 1139-1165 (2017). DOI: https://doi.org/10.1007/s11242-016-0815-7

51. A. Zolfaghari and M. Piri, Pore-scale network modeling of three-phase flow based on thermodynamically consistent threshold capillary pressures. I. Cusp formation and collapse, Transport in Porous Media, 116(3), 1093-1137 (2017). DOI: https://doi.org/10.1007/s11242-016-0814-8

50. M. Khishvand, A. H. Alizadeh, and M. Piri, In-situ characterization of wettability and pore-scale displacements during two- and three-phase flow in natural porous media, Advances in Water Resources, 97, 279-298 (2016). DOI: https://doi.org/10.1016/j.advwatres.2016.10.009

49. M. Khishvand, M. Akbarabadi, and M. Piri, Micro-scale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples, Advances in Water Resources, 94, 379-399 (2016). DOI: https://doi.org/10.1016/j.advwatres.2016.05.012

48. M. Sedghi, M. Piri, and L. Goual, Atomistic molecular dynamics simulations of crude oil/brine displacement in calcite mesopores, Langmuir, 32(14), 3375-3384 (2016). DOI: 10.1021/acs.langmuir.5b04713

47. E. Barsotti, S. P. Tan, S. Saraji, M. Piri, and Jin-Hong Chen, A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs, Fuel, 184, 344-361 (2016). DOI: https://doi.org/10.1016/j.fuel.2016.06.123

46. P. Tahmasebi, F. Javadpour, M. Sahimi, and M. Piri, Multiscale study for stochastic characterization of shale samples, Advances in Water Resources, 89, 91-103 (2016). DOI: https://doi.org/10.1016/j.advwatres.2016.01.008.

45. W. Welch and M. Piri, Pore diameter effects on phase behavior of a gas condensate in graphitic one-and two-dimensional nanopores, Journal of Molecular Modeling, 22, 22 (2016). DOI: https://doi.org/10.1007/s00894-015-2894-8

44. S. Li, M. Akbarabadi, Y. Zhang, and M. Piri, An integrated site characterization-to-optimization study for commercial-scale carbon dioxide storage, International Journal of Greenhouse Gas Control, 44, 74-87 (2016). DOI: https://doi.org/10.1016/j.ijggc.2015.10.003

43. M. Akbarabadi, M. Borges, A. Jan, F. Pereira, and M. Piri, A Bayesian framework for the validation of models for subsurface flows: Synthetic experiments, Computational Geosciences, 19, 1231-1250 (2015). DOI: https://doi.org/10.1007/s10596-015-9538-z

42. S. P. Tan and M. Piri, Equation-of-state modeling of associating-fluids phase equilibria in nanopores, Fluid Phase Equilibria, 405(15), 157-166 (2015). DOI: https://doi.org/10.1016/j.fluid.2015.07.044

41. W. Welch and M. Piri, Molecular dynamics simulations of retrograde condensation in narrow oil-wet nanopores, Journal of Physical Chemistry C, 119(18), 10040-10047 (2015). DOI: https://doi.org/10.1021/jp511125e

40. S. Saraji and M. Piri, The representative sample size in shale oil rocks and nano-scale characterization of transport properties, International Journal of Coal Geology, 146, 42-54 (2015). DOI: https://doi.org/10.1016/j.coal.2015.04.005

39. S. P. Tan and M. Piri, Equation-of-state modeling of confined-fluid phase equilibria in nanopores, Fluid Phase Equilibria, 393, 48-63 (2015). DOI: https://doi.org/10.1016/j.fluid.2015.02.028

38. V.Mirchi, S. Saraji, L. Goual, and M. Piri, Dynamic interfacial tension and wettability of shale in the presence of surfactants at reservoir conditions, Fuel, 148, 127-138 (2015). DOI: https://doi.org/10.1016/j.fuel.2015.01.077

37. X. Li, M. Akbarabadi, Z. T. Karpyn, M. Piri, and E. Bazilevskaya, Experimental investigation of carbon dioxide trapping due to capillary retention in saline aquifers, Geofluids, 15(4), 563-576 (2015). DOI: https://doi.org/10.1111/g.12127

36. A. Aghaei and M. Piri, Direct pore-to-core up-scaling of displacement processes: Dynamic pore network modeling and experimentation, Journal of Hydrology, 522, 488-509 (2015). DOI: https://doi.org/10.1016/j.jhydrol.2015.01.004

35. M. Akbarabadi and M. Piri, Co-sequestration of SO2 with supercritical CO2 in carbonates: An experimental study of capillary trapping, relative permeability, and capillary pressure, Advances in Water Resources, 77, 44-56 (2015). DOI: https://doi.org/10.1016/j.advwatres.2014.08.011

34. M. Sedghi, M. Piri, and L. Goual, Molecular dynamics of wetting layer formation and forced water invasion in angular nanopores with mixed wettability, Journal of Chemical Physics, 141, 194703 (2014). DOI: https://doi.org/10.1063/1.4901752

33. M. Heshmati and M. Piri, Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections, Langmuir, 30(47), 14151-14162 (2014). DOI: https://doi.org/10.1021/la501724y

32. A. Rahunanthan, F. Furtado, D. Marchesin, and M. Piri, Hysteretic enhancement of carbon dioxide trapping in deep aquifers, Computational Geosciences, 18(6), 899-912 (2014). DOI: https://doi.org/10.1007/s10596-014-9433-z

31. A. H. Alizadeh, M. Khishvand, M. A. Ioannidis, and M. Piri, Multi-scale experimental study of carbonated water injection: An effective process for mobilization and recovery of trapped oil, Fuel, 132(15), 219-235 (2014). DOI: https://doi.org/10.1016/j.fuel.2014.04.080

30. A. H. Alizadeh and M. Piri, Three-phase flow in porous media: A review of experimental studies on relative permeability, Reviews of Geophysics, 52(3), 468-521 (2014). DOI: https://doi.org/10.1002/2013RG000433

29. S. Saraji, M. Piri, and L. Goual, The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO2/brine/quartz systems, International Journal of Greenhouse Gas Control, 28, 147-155 (2014). DOI: https://doi.org/10.1016/j.ijggc.2014.06.024

28. A. H. Alizadeh and M. Piri, The effect of saturation history on three-phase relative permeability: An experimental study, Water Resources Research, 50(2), 1636-1664 (2014). DOI: https://doi.org/10.1002/2013WR014914

27. S. Ovaysi and M. Piri, Pore-space alteration induced by brine acidification in subsurface geologic formations, Water Resources Research, 50(1), 440-452 (2014). DOI: https://doi.org/10.1002/2013WR014289

26. S. P. Tan and M. Piri, Modeling the solubility of nitrogen dioxide in water using perturbed-chain statistical associating fluid theory, Industrial & Engineering Chemistry Research, 52(45), 16032-16043 (2013). DOI: https://doi.org/10.1021/ie402417p

25. S. P. Tan, Y. Yao, and M. Piri, Modeling the solubility of SO2 + CO2 mixtures in brine at elevated pressures and temperatures, Industrial & Engineering Chemistry Research, 52(31), 10864-10872 (2013). DOI: https://doi.org/10.1021/ie4017557

24. S. Saraji, L. Goual, and M. Piri, Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434(5), 260-267 (2013). DOI: https://doi.org/10.1016/j.colsurfa.2013.05.070

23. S. Saraji, L. Goual, M. Piri, and H. Plancher, Wettability of supercritical carbon dioxide/water/quartz systems: Simultaneous measurement of contact angle and interfacial tension at reservoir conditions, Langmuir, 29(23), 6856-6866 (2013). DOI: https://doi.org/10.1021/la3050863

22. S. Ovaysi and M. Piri, Pore-scale dissolution of CO2 + SO2 in deep saline aquifers, International Journal of Greenhouse Gas Control, 15, 119-133 (2013). DOI: https://doi.org/10.1016/j.ijggc.2013.02.009

21. M. Akbarabadi and M. Piri, Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions, Advances in Water Resources, 52, 190-206 (2013). DOI: https://doi.org/10.1016/j.advwatres.2012.06.014

20. S. Ovaysi and M. Piri, Multi-GPU acceleration of direct pore-scale modeling of fluid flow in natural porous media, Computer Physics Communications, 183(9), 1890-1898 (2012). DOI: https://doi.org/10.1016/j.cpc.2012.04.007

19. C. J. Landry, Z. T. Karpyn, and M. Piri, Pore-scale analysis of trapped immiscible fluid structures and fluid interfacial areas in oil-wet and water-wet bead packs, Geofluids, 11(2), 209-227 (2011). DOI: https://doi.org/10.1111/j.1468-8123.2011.00333.x

18. S. Ovaysi and M. Piri, Pore-scale modeling of dispersion in disordered porous media, Journal of Contaminant Hydrology, 124(1-4), 68-81 (2011). DOI: https://doi.org/10.1016/j.jconhyd.2011.02.004

17. S. Saraji, L. Goual, and M. Piri, Adsorption of Asphaltenes in porous media under flow conditions, Energy & Fuels, 24(11), 6009-6017 (2010). DOI: https://doi.org/10.1021/ef100881k

16. S. Ovaysi and M. Piri, Direct pore-level modeling of incompressible fluid flow in porous media, Journal of Computational Physics, 229(19), 7456-7476 (2010). DOI: https://doi.org/10.1016/j.jcp.2010.06.028

15. C. Douglas, F. Furtado, V. Ginting, M. Mendes, F. Pereira, and M. Piri, On the development of a high-performance tool for the simulation of CO2 injection into deep saline aquifers, Rocky Mountain Geology, 45(2), 151-161 (2010). DOI: https://doi.org/10.2113/gsrocky.45.2.151

14. Z. T. Karpyn, M. Piri, and G. Singh, Experimental investigation of trapped oil clusters in a water-wet bead pack using x-ray microtomography, Water Resources Research, 46(4), W04510 (2010). DOI: https://doi.org/10.1029/2008WR007539

13. B. Raeesi and M. Piri, The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach, Journal of Hydrology, 376(3-4), 337-352 (2009). DOI: https://doi.org/10.1016/j.jhydrol.2009.07.060

12. V. S. Suicmez, M. Piri, and M. J. Blunt, Effects of wettability and pore-level displacement on hydrocarbon trapping, Advances in Water Resources, 31(3), 503-512 (2008). DOI: https://doi.org/10.1016/j.advwatres.2007.11.003

11. M. I. J. Van Dijke, M. Piri, Introduction to special section on modeling of pore-scale processes, Water Resources Research, 43(12), W12S01 (2007). DOI: https://doi.org/10.1029/2007WR006332

10. M. I. J. Van Dijke, M. Piri, J. O. Helland, K. S. Sorbie, M. J. Blunt, and S. M. Skjæveland, Criteria for three-fluid configurations including layers in a pore with nonuniform wettability, Water Resources Research, 43(12), W12S05 (2007). DOI: https://doi.org/10.1029/2006WR005761

9. M. Piri and Z. T. Karpyn, Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. II: Results, Physical Review E, 76, 016316 (2007). DOI: https://doi.org/10.1103/PhysRevE.76.016316

8. Z. T. Karpyn and M. Piri, Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. I: Data conditioning and model description, Physical Review E, 76, 016315 (2007). DOI: https://doi.org/10.1103/PhysRevE.76.016315

7. V. S. Suicmez, M. Piri, and M. J. Blunt, Pore-scale simulation of water alternate gas injection, Transport in Porous Media, 66(3), 259-286 (2007). DOI: https://doi.org/10.1007/s11242-006-0017-9

6. R. C. Fuller, J. H. Prevost, and M. Piri, Three-phase equilibrium and partitioning calculations for CO2 sequestration in saline aquifers, Journal of Geophysical Research-Solid Earth, 111(B6), B06207 (2006). DOI: https://doi.org/10.1029/2005JB003618

5. M. Piri and M. J. Blunt, Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description, Physical Review E, 71, 026301 (2005). DOI: https://doi.org/10.1103/PhysRevE.71.026301

4. M. Piri and M. J. Blunt, Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results, Physical Review E, 71, 026302 (2005). DOI: https://doi.org/10.1103/PhysRevE.71.026302

3. P. H. Valvatne, M. Piri, X. Lopez, and M. J. Blunt, Predictive pore-scale modeling of single and multiphase flow, Transport in Porous Media, 58(1-2), 23-41 (2005). DOI: https://doi.org/10.1007/s11242-004-5468-2

2. M. Piri, and M. J. Blunt, Three-phase threshold capillary pressures in noncircular capillary tubes with different wettabilities including contact angle hysteresis, Physical Review E, 70, 061603 (2004). DOI: https://doi.org/10.1103/PhysRevE.70.061603

1. M. J. Blunt, M. D. Jackson, M. Piri, and P. H. Valvatne, Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow, Advances in Water Resources, 25(8-12), 1069-1089 (2002). DOI: https://doi.org/10.1016/S0309-1708(02)00049-0

CONFERENCE PAPERS, PRESENTATIONS, AND POSTERS

12. A. Zolfaghari Shahrak, M. Piri, and V. S. Suicmez, Thermodynamically Consistent Threshold Capillary Pressures for Displacements in Mixed-wet Irregular Capillary Tubes, Computational Methods in Water Resources XVII International Conference (CMWR XVII), San Francisco, USA, July 6–10 (2008).

11. B. Raeesi and M. Piri, Three-dimensional mixed-wet random pore-scale network modeling of relationships between interfacial area, capillary pressure and saturation, Computational Methods in Water Resources XVII International Conference (CMWR XVII), San Francisco, USA, July 6–10 (2008).

10. V. S. Suicmez, M. Piri, and M. J. Blunt, Surprising Trends on Trapped Hydrocarbon Saturation with Wettability, Society of Core Analysts, 21st International Symposium of the Society of Core Analysts, Calgary, Canada, September 10–14, Poster Number SCA2007–51, (2007).

9. S. Ovaysi and M. Piri, Dynamic pore-level modeling of multi-phase displacement processes in non-circular capillary tubes using a particle-based method, 60th Annual Meeting of the APS Division of Fluid Dynamics, Salt Lake City, Utah, November 18–20 (2007).

8. B. B. Alamdari, T. LaForce and M. Piri, Impact of Self-Consistent Physically-Based Three-Phase Relative Permeability on Oil Recovery by Secondary Gas-flooding, Paper SPE 110507, Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, California, November 11–14 (2007).

7. Z. T. Karpyn, and M. Piri, Prediction of fluid occupancy in fractures using network modeling and X-ray microtomography, AGU Fall Meeting, San Francisco, CA, December 11–15 (2006).

6. M. I. J. Van Dijke, M. Piri, K. S. Sorbie, and M. J. Blunt, Criterion for three-fluid configurations including layers in a pore with non-uniform wettability, Proceedings of the Computational Methods in Water Resources XVI International Conference (CMWR XVI), Copenhagen, Denmark, June 19–22 (2006).

5. V. S. Suicmez, M. Piri, and M. J. Blunt, Pore-scale simulation of water alternate gas injection, Proceedings of the Computational Methods in Water Resources XVI International Conference (CMWR XVI), Copenhagen, Denmark, June 19–22 (2006).

4. V. S. Suicmez, M. Piri, and M. J. Blunt, Pore-scale simulation of water alternate gas injection, Pore Scale Modeling of Three-Phase WAG Injection: Prediction of Relative Permeabilities and Trapping for Different Displacement Cycles, Paper SPE 95594, Proceedings of the SPE/DOE Symposium on Improved Oil Recovery held in Tulsa, OK, USA, April 22–26 (2006).

3. M. J. Blunt, B. Bijeljic, H. Dong, M. Jackson, X. Lopez, H. Okabe, M. Piri, and P. Valvatne, Predictive pore-scale modeling, Proceedings of DEVEX, Aberdeen, UK, May 18–19 (2005).

2. M. Piri, J. H. Prévost and R. Fuller, Carbon Dioxide sequestration in saline aquifers: evaporation, precipitation and compressibility effects, Proceedings of the Fourth Annual Conference on Carbon Capture & Sequestration, WA, May 2–5 (2005).

1. M. Piri and M. J. Blunt, Pore-scale modeling of three-phase flow in mixed-wet systems, Paper SPE 77726, Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, September 29–October 2 (2002).